×

mean square deviation meaning in Chinese

均方差
均方离差
均方偏差

Examples

  1. The pole location technique is proposed and the location of viscoelastic dampers is optimized . the pole location technique is contrasted to the viscoelastic dampers location method that dampers is located by mean square deviation of relative displacement between layers of offshore platforms
    研究了极点配置技术,对粘弹性阻尼器进行位置优化配置,同采用将粘弹性阻尼器设置在平台层间位移均方差最大处作了比较。
  2. ( 2 ) . according to the system indices and requirements together with the technology characteristic , it researches the capture possibility of apt capturing system . then it introduces the common scan methods , such as raster , spiral , raster spiral , rose and lissajo . ( 3 ) . it makes a detailed simulation analysis of the raster and spiral scan , analyze the connection between capture probability , capture time , system index at different capture resolution angle , capture range , vibration angle extent and terminal location distributing mean square deviation
    其中对几个关键部分进行了详细分析:计算了目标角反射器的激光雷达散射截面( lrcs )值,研究了qd与ccd对目标位置角度的计算方法和空间分辨率; ( 2 )根据系统指标和要求并结合现有国内技术特点研究了apt捕获系统扫描的捕获概率问题,然后分析了几种常见的扫描方式:矩形( raster )扫描、螺旋( spiral )扫描,矩形螺旋( rasterspiral )扫描,玫瑰形( rose )扫描以及李萨如形( lissajo )扫描; ( 3 )对分行扫描和螺旋扫描进行了详细的仿真分析,分析了它们在不同捕获分辨角、捕获范围、振动角振幅和终端位置分布均方差时的捕获概率、捕获时间与系统常数之间的关系。
  3. Taking two protein complexes , we performed md simulations on their candidate structures . according to the variations of the mean square deviation ( msd ) of the structures in md trajectories relative to the initial structures , the false structures can be excluded
    以两种蛋白质复合物为例,对其候选结构进行md模拟,根据md轨迹中构象相对于初始北京工业大学工学硕士学位论文摘要一构象的平方平均偏差( msd )随时间的变化来辅助打分函数排除错误构象,得到了较好的结果。
  4. Based on the principle of the cooperation , i . e , the correlative stochastic equations are located on the same probability level , the linear regression with fuzzy weight analysis is adopted to fit the test data , and the three - parameter stress - life curves of the mean and the mean square deviation are obtained
    根据协同原理,即相关联的随机方程动态地处于同一概率水准,采用模糊随机加权线性回归方法对试验数据进行拟合,得到了三参数的应力-寿命模型均值和均方差曲线,从而求得在给定应力下各可靠度的疲劳寿命。
  5. During the course of the research , the criterions of the interpolation effect are mean error ( me ) , mean absolute error ( mae ) , root mean squared interpolation error ( rmse ) and the difference of mean square deviation between the measured and the estimated surface air temperature . the conclusions are as follows : ( 1 ) by contrasting the gaussian weighted model associated with the error modification with the gaussian weighted model , the error modification is proved to considerably ameliorate the precision of spatial interpolation ; ( 2 ) on the base of the gaussian weighted model , taking altitudinal effect into account can reflect the trend in which temperature changes according to the topographic altitude and may ameliorate the precision of spatial interpolation correspondingly and apparently , which indicates that topographical effect on the preciseness of spatial interpolation can not be disregarded in terms of the region with complicated topography ; ( 3 ) the map of daily surface air temperature distribution , using the modified gaussian weighted model a and b , can accurately reflect the temperature - changing - with - topographical - altitude trend . among them , the better is the model a , whose me is below 0 . 03 ?
    在此过程中,采用平均误差( me ) ,平均绝对误差( mae ) ,插值平均误差平方的平方根( rootmeansquaredinterpolationerror ,简称rmsie ) ,插值前后测站要素值的均方差( meansquaredeviation ,简称msd )差值作为判定插值效果的标准,得出如下结论:通过高斯权重法与结合逐步订正的高斯权重法的对比,说明结合逐步订正方案的高斯权重法可大大提高地面日气温的插值精度;在高斯权重法中加入海拔影响项可以反映出温度随地形高度的变化趋势,同时也能较大地提高地面日气温的空间插值精度,说明在地形复杂的区域,地形影响在插值精度中是不可忽略的;对于高斯权重法的两种改进方案得到的地面日气温分布图都能很好地反映出表面大气气温随地形高度的变化趋势。

Related Words

  1. temperature deviation
  2. borehole deviation
  3. residual deviation
  4. lower deviation
  5. sport deviation
  6. deviation index
  7. chordal deviation
  8. grid deviation
  9. sexual deviation
  10. charge deviation
  11. mean square continuity
  12. mean square departure
  13. mean square dip
  14. mean square displacement
PC Version

Copyright © 2018 WordTech Co.